Neural Networks Based Methods for Voice Activity Detection in a Multi-room Domestic Environment

نویسندگان

  • Giacomo Ferroni
  • Roberto Bonfigli
  • Emanuele Principi
  • Stefano Squartini
  • Francesco Piazza
چکیده

English. Several Voice or Speaker Activity Detection (VAD) systems exist in literature. They are indeed a fundamental part of complex systems that deals with speech processing. In this work the authors exploit neural network based VAD to address the speaker activity detection in a multiroom domestic scenario. The goal is to detect the voice activity in each of the two target rooms in presence of other sounds and speeches occurring in other rooms and outside. A large dataset recorded in a smart-home is provided and interesting results are obtained. Italiano. Un rilevatore di attività vocale (Voice Activity Detector, VAD) costituisce una delle parti fondamentali di sistemi più complessi che operano con segnali vocali. Il presente lavoro applica VAD basati su reti neurali per il rilevamento del parlato in uno scenario domestico multimicrofono. Lo scopo è quello di rilevare l’attività vocale presente nelle due stanze di riferimento in presenza di altri suoni e parlatori in altre stanze o all’esterno. Le prestazioni sono state valutate su un ampio dataset ed i risultati ottenuti sono

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Robust Speech Recognition with Microphone Arrays in Multi-room Home Environments

This paper presents a set of exploratory experiments addressed to analyse and evaluate the performance of baseline speech processing components for distant voice command recognition applications in domestic environments. The analysis, conducted in a multi-channel multi-room scenario, showed the importance of adequate room detection and channel selection strategies to obtain acceptable performan...

متن کامل

Boosted deep neural networks and multi-resolution cochleagram features for voice activity detection

Voice activity detection (VAD) is an important frontend of many speech processing systems. In this paper, we describe a new VAD algorithm based on boosted deep neural networks (bDNNs). The proposed algorithm first generates multiple base predictions for a single frame from only one DNN and then aggregates the base predictions for a better prediction of the frame. Moreover, we employ a new acous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014